
Optimization in StarCraft: Building an Effective Army

Background

• RTS game publish by Blizzard
Entertainment in ‘98

• Extremely strategic in design
• Requires quick risk assessment skills
• Goal - defeat your opponent’s army before

he/she defeats yours
• Minerals, vespene gas and supply must be

gathered/built
• Infantry units have various unique

parameters

Problem Description

The objective in this project is to build the most
effective army given a multitude of constraints. We
are defining effective as overall damage and life of
the entire army. The decision variable is the number
of each type of infantry unit to produce. Constraints
bounding this optimization problem are time, total
mineral and vespene count, supply and army variety,
as we want an assortment of units.

Assumptions

• Only ground units will be considered for production.
• The model will only include non-upgraded units.
• All necessary production buildings (with add-ons) have already

been built at the beginning of the simulation.
• The element of time is not considered as a continuous domain.

Mathematical Model

Variables:
𝐴𝑖 = # of units produced
𝐷𝑖= Damage
𝐿𝑖= Life
𝑆𝑖= Supply
𝑀𝑖= Mineral
𝑉𝑖= Vespene
𝑇𝑖= Build time
Supply = Total supply
Mineral = Total mineral
Vespene = Total vespene
Time = Max time

Objective Function:
Max 𝐴𝑖(𝐷𝑖+𝐿𝑖)

Constraints:
 𝐴𝑖𝑆𝑖 ≤Supply
 𝐴𝑖𝑀𝑖 ≤Mineral
 𝐴𝑖𝑉𝑖 ≤Vespene
 𝐴𝑖𝑇𝑖 ≤Time
 𝐴𝑐𝑜𝑚𝑚𝑎𝑛𝑑 ≥ 1
 𝐴𝑏𝑎𝑟𝑟𝑎𝑐𝑘𝑠 ≥ 1
 𝐴𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ≥ 1

Resources:

• modeling software AMPL
• statistics – us.battle.net/sc2/en/game.

set UNITS; #infantry units

param mineral {UNITS} > 0; # mineral cost for each unit
param vespene {UNITS} >= 0; # vespene cost for each unit
param supply {UNITS} > 0; # supply count for each unit
param buildtime {UNITS} > 0; # production time in seconds
param damage {UNITS} > 0; # damage associated for each unit
param life {UNITS} > 0; # amount of life for each unit

param maxTime > 0; # total time allotted for
production
param maxMineral > 0; # total mineral
param maxVespene > 0; # total vespene
param maxSupply > 0; # total supply

var Make {u in UNITS} >= 0 integer; # units to produce
#Objective: max life and damage (best army)
maximize Army: sum {u in UNITS} damage[u] * Make[u]
 + sum {u in UNITS} life[u] * Make[u];
#Production Constraints
subject to Time: sum {u in UNITS} buildtime[u] * Make[u] <= maxTime;
subject to Mineral: sum {u in UNITS} mineral[u] * Make[u] <= maxMineral;
subject to Vespene: sum {u in UNITS} vespene[u] * Make[u] <= maxVespene;
subject to Supply: sum {u in UNITS} supply[u] * Make[u] <= maxSupply;

#Variety Constraints (easily assigned by user according to
build/opponent):
subject to SCV: Make['Scv'] =3;
subject to Marine: Make['Mare'] >=4;
subject to Marrader: Make['Marr'] >=4;
#subject to Reaper: Make['Reap'] >=1;
#subject to Ghost: Make['Ghst'] >=1;
#subject to Hellion: Make['Hell'] >=1;
subject to SeigeTank: Make['Sgtk'] >=1;
#subject to Thors: Make['Thor'] >=1;

data;

set UNITS := Scv Mare Marr Reap Ghst Hell Sgtk Thor;

param: mineral vespene supply buildtime damage life :=

#Command Center:
 Scv 50 0 1 17 5 45

#Barracks:
 Mare 50 0 1 25 6 45
 Marr 100 25 2 30 10 125
 Reap 50 50 1 45 4 60
 Ghst 200 100 2 40 10 100

#Factory:
 Hell 100 0 2 30 8 90
 Sgtk 150 125 3 45 15 160
 Thor 300 200 6 60 30 400;

param maxTime := 10000;
param maxMineral := 1500;
param maxVespene := 500;
param maxSupply := 70;

AMPL Output / Results

AMPL Data

AMPL Model

CPLEX 12.6.0.1: optimal
integer solution;
objective 1904
1 MIP simplex iterations
0 branch-and-bound nodes

Make [*] :=
Ghst 0
Hell 0
Mare 4
Marr 7
Reap 0
 Scv 3
Sgtk 1
Thor 1

Jessica Garrett
Math 3301; Fall ‘14

The only associated slack was with buildtime as Time = 466.
All other constraints were used to the max. In general,
Marraders were selected because they have the best
cost/benefit ratio.

Future Works

• Implement time as a continuous variable
• Consider building and upgrade costs
• Include all possible units

