Optimization in StarCraft: Building an Effective Army

5

88 Background NS AMPL Data

RTS game publish by Blizzard
Entertainment in ‘98 Only ground units will be considered for production.
Extremely strategic in design The model will only include non-upgraded units. set UNITS := Scv Mare Marr Reap Ghst Hell Sgtk Thor;

Requires quick risk assessment skills All necessary production buildings (with add-ons) have already
Goal - defeat your opponent’s army before been built at the beginning of the simulation. param: mineral vespene supply buildtime damage life :=

data;

he/she defeats yours The element of time is not considered as a continuous domain.)
Minerals, vespene gas and supply must be . #Command Center:

gathered/built Scv

Infantry units have various unique #Barracks:
parameters AMPL Model | Mare

Marr
Reap

Problem Description set UNETS; #infantry units Ghst

param mineral {UNITS} > ©; # mineral cost for each unit #Factory:
The objective in this project is to build the most param vespene {UNITS} >= 0; # vespene cost for each unit Hell 100
effective army given a multitude of constraints. We param supply {UNITS} > @; # supply count for each unit sgtk 150
are defining effective as overall damage and life of g:::: Zgi‘igzl?sh‘ﬁz:}ﬁi}ei 0; i Z;;g;;t;gzozi’;iegnf;ﬁcz;g; it Thor 300
the entire army. The decision variable is the number param life {UNITS} > 0 # amount of life for each unit param maxTime := 10000;
of each type of infantry unit to produce. Constraints param maxMineral := 15ée;

bounding this optimization problem are time, total param maxTime > 0; # total time allotted for param maxVespene := 500;
| mineral and vespene count, supply and army variety, g Production param maxSupply := 70;

£ uni param maxMineral > @; # total mineral
as we want an assortment of units. param maxVespene > 0; # total vespene

¢ param maxSupply > ©; # total supply |
Mathemat|ca| MOdeI . var Make {u in UNITS} >= @ integer; # units to produce AMPL OUtPUt /Ru LS Y
#0bjective: max life and damage (best army) - - =
" maximize Army: sum {u in UNITS} damage[u] * Make[u] CPLEX 12.6.0.1: optimal
Variables: G ETCH + sum {u in UNITS} life[u] * Make[u]; integer solution;
A; = # of units produced Y A;S; <Supply #Production Constraints objective 1904
- = 2 ime: i i i * - ime: 1 MIP simplex iterations
D;= Damage Y A;M; <Mineral subject to Time: sum {u in UNITS} buildtime[u] Make[u] <= maxTime;
L.= Life 1= subject to Mineral: sum {u in UNITS} mineral[u] * Make[u] <= maxMineral; 0 _branch-and-bound nodes
v 2 AV <Vespene subject to Vespene: sum {u in UNITS} vespene[u] * Make[u] <= maxVespene;
‘;;_ S“F’ply | Y A;T; <Time subject to Supply: sum {u in UNITS} supply[u] * Make[u] <= maxSupply;
i= Minera Y Acommana =1 The only associated slack was with buildtime as Time = 466.

V;=Vespene #Variety Constraints (easily assigned by user according to X
T;: Builz time Y Aparracks = 1 build/opponent): All other constraints were used to the max. In general,

Supply = Total supply subject to SCV: Make['Scv'] =3; Marraders were selected because they have the best
! | subject to Marine: Make['Mare'] >=4; cost/benefit ratio.

Mineral = Total mineral Objective Function: subject to Marrader: Make['Marr'] >=4;

Vespene = Total vespene Max ¥ 4 (D;+ L; #subject to Reaper: Make['Reap'] >=1;

Time = Max time L #subject to Ghost: Make['Ghst'] >=1;

#subject to Hellion: Make['Hell'] >=1;

subject to SeigeTank: Make['Sgtk'] >=1;

Resources: ! #subject to Thors: Make['Thor'] >=1; Implement time as a continuous variable

Consider building and upgrade costs
Include all possible units

>
1
>

