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Bezier Curves and Data Fitting 

 

          Bezier curves are a playful application of computer graphics, such as font design.  They 

are defined first by four point in Cartesian coordinates, (𝑥1, 𝑦1) (𝑥2, 𝑦2) (𝑥3, 𝑦3) (𝑥4, 𝑦4) where 

(𝑥1, 𝑦1) and (𝑥4, 𝑦4) are endpoints and the middle two are “control points”.  Our curve “leaves” 

(𝑥1, 𝑦1) in the direction of the first control point (𝑥2, 𝑦2), i.e, along the tangent line defined by 

(𝑥2 − 𝑥1, 𝑦2 − 𝑦1). Likewise, (𝑥3, 𝑦3) (𝑥4, 𝑦4) express the later part of the curve.  At value t, 

where 𝑡 ∈ [0,1] our coordinates are defined parametrically as  

𝑥(𝑡) =  𝑥1 + 𝑏𝑥 + 𝑐𝑥𝑡2 + 𝑑𝑥𝑡3 

𝑦(𝑡) =  𝑦1 +  𝑏𝑦 + 𝑐𝑦𝑡2 + 𝑑𝑦𝑡3 

and the coefficients represented as  

𝑏𝑥 = 3(𝑥2 − 𝑥1) 

𝑐𝑥 = 3(𝑥3 − 𝑥2) − 𝑏𝑥 

𝑑𝑥 = 𝑥4 − 𝑥1 − 𝑏𝑥 − 𝑐𝑥 

and similarly for 𝑏𝑦, 𝑐𝑦 and 𝑑𝑦.  After computing coefficients, we consider x(t) and y(t) at 

various values of t, say t = [0:0.1:1], and plot the Bezier curve along projected points.  If t is 

defined as stated, we will have 101 Cartesian points to consider. 

3.1 Fun with Bezier Curves  

1. First we must write a function, get_coeffs, that accepts two end points and two control points 

and returns a coefficient vector of size (1,2).   

function [ xt yt ] = get_coeffs( ctrl1, ctrl2, edpt1, edpt2 ) 
%Takes four points and computes a x(t) and y(t) which defines a Bezier curve.  
%Inputs: ctrl1, ctrl2 = control points; (x2,y2) and (x3,y3) 
%        edpt1,edpt2 = endpointsl (x1,y1) and (x4,y4) 
%%Outputs: xt, yt = coefficients needed to define Bezier curve.  
% 
%Varibles bx,cx,dx,by,cy,dy are defined as... 
clc; close; 
bx = 3*(ctrl1(1)- edpt1(1)); 
cx = 3*(ctrl2(1)- ctrl1(1)); 
dx = edpt2(1) - edpt1(1) - bx -cx; 
by = 3*(ctrl1(2)- edpt1(2)); 
cy = 3*(ctrl2(2)- ctrl1(2)); 



dy = edpt2(2) - edpt1(2) - by - cy; 

  
%setup coeff as vector 
xt = [edpt1(1), bx, cx, dx]; 
yt = [edpt1(2), by, cy, dy]; 
end 

 

2. Second, we must actually points along the curve using the function values x(t) and y(t) via the 

function make_bezier 

function [ xtval ytval ] = make_bezier( xt, yt, t ) 
%Returns a (x,y) pair corresponding to the position on Bezier curve at 
%value t; where t is between (0,1) 
%Inputs: xy, yt = coefficient vectors both of size 4? 
%        t = user defined parameter taking on values (0,1)  
%Outputs: pair = point (x,y) on Cartesian coordinates representing position 
%at value t. 
%xtval = numerical value(s) corresponding to x(t) at specified t. 
%ytval = numerical value(s) corresponding to y(t) at specified t. 
 

t = [0:.01:1]; %define t as points between 0 and 1 
new_xt = fliplr(xt); %descending order for use of polyval function 
new_yt = fliplr(yt); 
xtval = polyval(new_xt,t); 
ytval = polyval(new_yt,t);  

end 

 

3. The make_bezier function simply returns an array of x and y values of equal quantities.  To 

actually create a Bezier curve we must plot our findings.  Let’s test our functions by graphing the 

cubic curve associated with endpoints and control points 3(a) – 3(c).  Below is the plotting code 

as well as the results… 

%Script calls functions get_coeffs and make_bezier and plots Bezier 
%polynomials with t values from 0 to 1 in 0.01 intervals. 
clear; clc; 
 

%(a) points: (1,1) (6,2); control points: (1.5, 1.25) (7,3) 
a1=[1.5 1.25]; b1=[7 3]; c1=[1 1]; d1=[6 2]; 
[xt1 yt1] = get_coeffs(a1,b1,c1,d1); 
[xtval1 ytval1 ] = make_bezier( xt1, yt1 ); 
subplot(2,2,1); 
plot(xtval1, ytval1,'g'); 
title('3(a)') 

  
%(b) points: (1,1) (6,2); control points: (1.25, 1.5) (5,3) 
a2=[1.25 1.5]; b2=[5 3]; c2=[1 1]; d2=[6 2]; 
[xt2 yt2] = get_coeffs(a2,b2,c2,d2); 
[xtval2 ytval2 ] = make_bezier( xt2, yt2 ); 
subplot(2,2,2); 
plot(xtval2, ytval2,'c'); 
title('3(b)') 

 
%(c) points: (0,0) (4,6); control points: (.5, .5) (3.5,7) (first part) 
a3a=[.5 .5]; b3a=[3.5 7]; c3a=[0 0]; d3a=[4 6]; 



[xt3a yt3a] = get_coeffs(a3a,b3a,c3a,d3a); 
[xtval3a ytval3a ] = make_bezier( xt3a, yt3a ); 
  

%points: (4,6) (6,1); control points; (4.5,5) (7,2)  (second part) 
a3b=[4.5 5]; b3b=[7 2]; c3b=[4 6]; d3b=[6 1]; 
[xt3b yt3b] = get_coeffs(a3b,b3b,c3b,d3b); 
[xtval3b ytval3b ] = make_bezier( xt3b, yt3b ); 
subplot(2,2,3); 
plot(xtval3a, ytval3a,'b', xtval3b, ytval3b, 'b'); %plot both 
title('3(c)') 

  
%(d) points: (0,0)(2,1); control points: (0.5,0.5) (3,1) (first part) 
a4a=[.5 .5]; b4a=[3 1]; c4a=[0 0]; d4a=[2 1]; 
[xt4a yt4a] = get_coeffs(a4a,b4a,c4a,d4a); 
[xtval4a ytval4a ] = make_bezier( xt4a, yt4a ); 
%points: (2,1) (4,0); control points; (3,1) (5,1)  (second part) 
a4b=[3 1]; b4b=[5 1]; c4b=[2 1]; d4b=[4 0]; 
[xt4b yt4b] = get_coeffs(a4b,b4b,c4b,d4b); 
[xtval4b ytval4b ] = make_bezier( xt4b, yt4b ); 
%points: (4,0) (6,1); control points; (3,1) (6.5,0.25)  (third part) 
a4c=[3 1]; b4c=[6.5 0.25]; c4c=[4 0]; d4c=[6 1]; 
[xt4c yt4c] = get_coeffs(a4c,b4c,c4c,d4c); 
[xtval4c ytval4c ] = make_bezier( xt4c, yt4c ); 
subplot(2,2,4); 
plot(xtval4a, ytval4a,'r', xtval4b, ytval4b, 'r', xtval4c,ytval4c, 'r'); 

%plot all three 
title('3(d)') 

 
 

 
  

 
 
 
 
 

 
 



4. Here, we can see Bezier curves in action. In parts c and d we can see that the curve is really 

defined as multiple Bezier curves with appropriate starting and ending points for each segment.  

How can we considering just a general matrix of endpoints/control points where each row is one 

segment?  Functions,  bezier_coeffs and Bezier_poly demonstrate just this… 

function [ xt yt numrow] = bezier_coeffs( p ) 
%Takes a matrix p of dimensions (m x 8), where each row is a x,y end/control 
%point and returns a x(t) value and a y(t) value needed to define curve. Also 
%returns number of rows in matrix p. 
  

numrow = size(p,1) %returns number of rows 

  
%Variables bx,cx,dx,by,cy,dy are defined as... 
clc; close; 

  
for k=1:numrow 
    bx = 3*(p(k,3) - p(k,1)); 
    cx = 3*(p(k,5) - p(k,3)) - bx; 
    dx = p(k,7) - p(k,1) - bx - cx; 

  
    by = 3*(p(k,4) - p(k,2)); 
    cy = 3*(p(k,6) - p(k,4)) - by; 
    dy = p(k,8) - p(k,2) - by - cy; 

     
    %setup coefficients as "cell array vector" 
    xt{k} = [p(k,1), bx, cx, dx];  %each "element" in xt and xt is a 1x4 
    yt{k} = [p(k,2), by, cy, dy]; 
end 
end 

 
function [ xval yval ] = bezier_poly(xt,yt,n) 
%Takes coefficient matrix for bezier curve and computs a numerical x and y 
%value.  xt, for example is in the form where each element is a cell array, 
%therefore consider the "cell2mat" built-in function. n=# of rows in 
%original matrix p, which all three inputs were derived from... 

  
xval = zeros(n,101); %pe-establish arrays of values 
yval = zeros(n,101); 
t = [0:.01:1]; 

  
for j = 1:n                         %consider x values 
    xt_new = cell2mat(xt(j)); 
    xt_newer = fliplr(xt_new); 
    xval(j,1:101) = polyval(xt_newer,t); 

     
    yt_new = cell2mat(yt(j));       %consider y values 
    yt_newer = fliplr(yt_new); 
    yval(j,1:101) = polyval(yt_newer,t); 
end 
end 

 
To test our general all-purpose functions let’s consider the matrix p and plot the associated 

Beizer curves.  This four part curve traces the letter “n”.   



p = [3 6 3.3 6.5 2.5 2.5 2 2;  
     2 2 2.8 3 5 5.8 6 6;  
     6 6 5.8 5 4.5 2.5 5 2;  
     5 2 5.5 2.2 6.4 2.8 6.5 3] 
[x y n] = bezier_coeffs(p); 
[xval yval] = bezier_poly(x,y,n); 
 

for k = 1:n 
    plot(xval(k,1:101),yval(k,1:101)); 
    axis([2 6.5 2 6.5]) 
    hold on 
end 

 

 
5.  In theory, any two dimensional sketch can be represented by a matrix of size (m x 8) and then 

expressed as Bezier curves.  Let’s look now at the matrix m and its associated curve... (Note- the 

asymmetry was intentional) 
 

m = [4 0 4.75 2 4.75 6 4.75 8;        
     4.75 7 3 7 1.5 7 1 7.5           
     1 7.5 1.5 9.2 4.2 8 4.75 8       
     4.75 8 4.9 8 5.5 7.8 5.7 7.8     
     5.7 7.8 5.6 7.7 9.4 7.5 9.5 7.5  
     9.5 7.5 9 7 6.5 7 5.7 7          
     9.5 7.5 10 12 7.5 17 4.9 17.5    
     4.9 17.5 2 17 0.9 9 1 7.5        
     5.7 7.8 5.68 6 5.7 2 6.2 0]      
 

[x y n] = bezier_coeffs(m); 
[xval yval] = bezier_poly(x,y,n); 
 

for k = 1:n 
    plot(xval(k,1:101),yval(k,1:101),'r'); 
    axis([0 20 0 20]) 
    hold on 
end 

3.2 Fitting Bezier Curves 

3.2.1 Derivative (gradient) approximation 

1)     Let’s consider the 3rd degree Taylor Series Approximation for following functions: 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2
𝑓′′(𝑥) +

ℎ3

6
𝑓′′′(𝑐1)             𝑥 < 𝑐1 < (𝑥 + ℎ) 

𝑓(𝑥 − ℎ) = 𝑓(𝑥) − ℎ𝑓′(𝑥) +
ℎ2

2
𝑓′′(𝑥) −

ℎ3

6
𝑓′′′(𝑐2)             (𝑥 − ℎ) < 𝑐2 < 𝑥 

Subtract 𝑓(𝑥 + ℎ) −  𝑓(𝑥 − ℎ) and solve for 𝑓′(𝑥)… 



𝑓′(𝑥) =  
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
−

ℎ2

12
𝑓′′′(𝑐1) −

ℎ2

12
𝑓′′′(𝑐2)  

We can see the first term is a slight variation of the definition of the first derivative, where, h is 

“small” 𝑓′(𝑥) ≈
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. Therefore, the last two terms are sources for error. However, the 

Generalized Intermediate Value Theorem suggests that the last two terms can be combined, 

where our now arbitrary constant 𝑐 ∈ (𝑥 − ℎ, 𝑥 + ℎ).  Our finalized formula for 𝑓′(𝑥) is known 

as the Three-point centered-difference formula.   Since the remainder term is of degree 2, 𝑂(ℎ2), 

the Three-point centered-difference formula is an order 2 approximation.  When the error term is 

omitted from this formula, we are of course considering just an approximation of the derivative. 

𝑓′(𝑥) =  
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
−

ℎ2

6
𝑓′′′(𝑐) 

2) Fixing h to be 0.001 consider the function dt that returns the approximate derivative at 𝑥0 

given a function handle f and a numerical scalar 𝑥0 

function [ df_approx ] = df(f,x0) 
%Comutes approximated derivative using 3-point central difference formula 

  
%Inputs: f = user defined function handle 
%        x0 = user defined scalar 
format long 
h = 0.001; 
df_approx = (f(x0+h) - f(x0-h))/(2*h); 
end  

 

Defining our function as 𝑓 =  @(x) 2 ∗ x. ^2 and 𝑥0 = 3, function df returns the value 

11.999999999998678.  The true derivative at 𝑥0 = 3 is 𝑓′(3) = 4(3) = 12.  The forward 

relative error is just  -1.101341240428155e-13.  Again, let’s now consider the function handle as 

𝑔 =  @(x) exp (3 ∗ x).  We see that the approximate derivative using the Three-point centered-

difference formula is 2.430928824662124e+04. The true derivative is 𝑔′(3) =  3𝑒3∗3= 

2.430925178272615e+04.  Again, our computed results are also near identical to the true 

derivative.   The relative error for our second test is 1.500000716227131e-06. 

 

3.2.3 Gradient Descent 

 

     In the previous section, we used the three point difference formula, omitting the last term, to 

approximate the derivative.  If we were to consider the error term in our formula, how might we 

attempt to minimize this error function, as of course this would yield a better approximation.  

Gradient descent is a technique we may consider and is defined iteratively by   

𝑥𝑖+1 =  𝑥𝑖 − 𝛾𝑓′(𝑥𝑖 ) 

Using our df function to derive 𝑓′(𝑥𝑖 ) let’s consider the following function, descent, to compute 

a value x that minimizes an error function.  
 
function [ g ] = descent(f,x0) 
%Gradient descent via iterative methods. Takes function handle f and initial 



%value to first approximate the derivative via three point centered 
%difference function, df. 
  

format long   

fp = df(f,x0);   
eps = 0.1; 
x(1) = x0; 
iter = 0; 
 for i = 1:501; 
     fp = df(f,x(i)); 
     x(i+1) = x(i) - (eps*fp); 
     iter = iter + 1;       %define counter 
        if abs (x(i+1)-x(i)) < 0.0001  %stopping conditions  
            break 
        end 
  end 
g = x(i+1); 
disp(iter); 
end 

 

1) The function, descent, fixes 𝛾 to be 0.1 and uses the stopping criteria of 500 iterations or when 

the difference between the current 𝑥𝑖 and the previous is less than 0.0001.  Let’s this function 

with the error function 𝐸(𝑥) =  (𝑥 − 2)2 using the initial value of 𝑥0 = 4 

2) The gradient at the initial point 𝑥0 = 4 is 𝑥 = 4 − (0.1 ∗ 4.000000000000448) = 

3.599999999999955.   Evaluating the error function at this value yields 2.559999999999855, 

which is quite large considering we want a value significantly close to zero.  

3)     Of course the true solution should be 𝑥 = 2 as 𝐸′(𝑥) = 2(𝑥 − 2) = 0 when 𝑥 = 2. 

4)     Executing 𝑑𝑒𝑠𝑐𝑒𝑛𝑡(𝑓, 4) yields the computed x to be 2.000332306998947 with 39 

iterations.   The approximated solution is accurate within 3 decimal places.  Redefining our 

stopping criteria with tighter tolerance would produce better results.  For example changing  

The condition of |𝑥𝑖+1 − 𝑥𝑖| < 10−15 would yield a result within 13 decimals places in 142 

iterations.  

 

3.2.3 Fitting to data  

      

     Consider the following 7 points 

(0.284,1.0), (0.305, 0.65), (0.317,0.3), 

(0.32, 0.0),  (0.335, 0.25), (0.338, 0.6), 

and (0.32, 1.0).  The plot to the right 

demonstrates an approximate shape.  

At a glance, we can see than the figure 

closely resembles the letter “v”.  With 

the knowledge of Bezier splines we 

can modify this figure, or “fit the data” 

to resemble an even more 

recognizable letter “v”.  If one Bezier 

curve𝐵1(𝑡), fitting the left side of the 

letter, was given, could we complete 

the remaining right,𝐵1(𝑡)?  Let’s look 

at the following matrix𝐵, where 𝐵1is 𝐵(1, : )and 𝐵2 is 𝐵(2, : )and is set up as endpoint/control point as we 

saw in previous sections. 



B = [0.284 1.0 0.305 0.7 0.32 0.4 0.32 0.0; 
  0.32 0.0 0.38 0.3 0.34 0.7 0.32 1.0] 

 

1) We can see that the left spline 𝐵1 

fits the data points very well.  

However, 𝐵2, the right portion, is 

hyper-extended.  Notably, the curve 

leaving the first endpoint (0.32, 0.0) 

is being “pulled” too far in the x 

direction by the control point (0.38, 

0.3).  In order to fix our graphical 

error, let’s look at the Matlab 

function make_B2 that takes the 

first control point 𝑥2 as an input 

variable and, coupled with similar 

code from get_coeffs, to return a 

new form of 𝐵2. All other values 

remain unchanged.  

 
2) function [ B2x_new B2y_new ] = make_B2( x0 ) 
% Takes input value of x-coordinate of first control point in Bezier Spline  
%creation.  The output is a 8x1 new version of B2.  

  
B = [0.284 1.0 0.305 0.7 0.32 0.4 0.32 0.0; 
      0.32 0.0 x0 0.3 0.34 0.7 0.32 1.0]; 

  
for k=1:2 
    bx = 3*(B(k,3) - B(k,1)); 
    cx = 3*(B(k,5) - B(k,3)) - bx; 
    dx = B(k,7) - B(k,1) - bx - cx; 

  
    by = 3*(B(k,4) - B(k,2)); 
    cy = 3*(B(k,6) - B(k,4)) - by; 
    dy = B(k,8) - B(k,2) - by - cy; 

  
    %setup coeff as "cell array vector" 
    xt{k} = [B(k,1), bx, cx, dx];  %each "element" in xt and xt is a 1x4 
    yt{k} = [B(k,2), by, cy, dy]; 
end 
[ xval yval ] = bezier_poly(xt,yt,2); 
B2x_new = xval(2,:); 
B2y_new = yval(2,:); 

  
a = [.284 .305 .317 .32 .335 .338 .32]; 
b = [1 .65 .3 0 .25 .6 1]; 
for k = 1:2 
    plot(xval(k,1:101),yval(k,1:101),'r',a,b); 
    axis([.26 .38 -.1 1.1]) 
    hold on 
end 
end 



The previous function allows us to vary the value of our x-coordinate of our first control point.  

Defining x0 = 0.345 for example is a much better fit for 𝐵2.  However we want to generate a 

curve that minimizes the distance between 𝐵2and our original data points.  Let’s look at this error 

numerically rather than graphically.  The following function err, considers the sum of squares 

difference between data points (0.335, 0.25),(0.338, 0.6) and the associated  𝐵2spline when t = 

0.3 and t= 0.6 respectively. 

3) function [s] = err( x0 ) 
%finds sum of square difference between data points and B2 curve. 
 

[B2x_new B2y_new ] = make_B2( x0 ); 
a1 = B2x_new(31); % corresponds to t = .3  
b1 = B2y_new(31); 
a2 = B2x_new(61); % corresponds to t = .6  
b2 = B2y_new(61); 

%sum of squares formula 
s = (a1 - 0.335).^2 + (b1 - 0.25).^2 + (a2 - 0.338).^2 + (b2 - 0.6).^2; 

 

4)  Now that an error function has been designated, as with any sort of approximation, we wish 

to minimize err using our gradient descent method seen before.  Define the variable s as a 

function handle, 𝑠 = @(𝑥0) 𝑒𝑟𝑟(𝑥0), then call descent(s,0.38) as 0.38 is our initial 𝑥0value used 

in creating 𝐵2.  The returned value is 0.34755231143569.  What this means is that the least 

amount of distances (error) between our initial data points and the  𝐵2 spline occurs when the x 

value of the first control point is ≈ 0.3476.  This numerical result reflects to our graphical guess 

and check result of 0.345 that we noted earlier.   The iterative process of gradient descent 

projected 𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 in 455 steps.  The graph below summarizes our findings.  

 

5)  

 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

𝑥0 = 0.38 

 

𝑥0 

𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

≈  0.3476 

455 iterations to 
find  𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 

 𝐵2 

 𝐵1 



6)  The curve to the farthest right is the associated  𝐵2 spline when 𝑥0 = 0.38 , the initial x-

coordinate value for the first control point for  𝐵2.  After 455 iterations of gradient descent, we 

see that error is minimized when 𝑥0 ≈ 0.3476.  It is important to note that 455 cycles   The 

tic/toc function reveals the elapsed time for executing descent (s,.38) of ≈39.3 second (which is 

quite high). 


